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ABSTRACT
In this paper, we study a maximum likelihood estimation (MLE)
approach to voting when the set of alternatives has a multi-issue
structure, and the voters’ preferences are represented by CP-nets.

We first consider general multi-issue domains, and study whether
and how issue-by-issue voting rules and sequential voting rules
can be represented by MLEs. We first show that issue-by-issue
voting rules in which each local rule is itself an MLE (resp. a
candidate scoring rule) can be represented by MLEs with a weak
(resp. strong) decomposability property. Then, we prove two the-
orems that state that if the noise model satisfies a very weak de-
composability property, then no sequential voting rule that satisfies
unanimity can be represented by an MLE, unless the number of
voters is bounded.

We then consider multi-issue domains in which each issue is
binary; for these, we propose a general family of distance-based
noise models, of which give an axiomatic characterization. We
then propose a more specific family of natural distance-based noise
models that are parameterized by a threshold. We identify the com-
plexity of winner determination for the corresponding MLE voting
rule in the two most important subcases of this framework.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences–
Economics; I.2.11 [ Distributed Artificial Intelligence]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Computational social choice, voting in multi-issue domains, maxi-
mum likelihood estimator, distance-based models

1. INTRODUCTION
A natural way for agents to make a joint decision when they

have possibly conflicting preferences over a set of alternatives is by
voting. Each agent (voter) is asked to report her preferences, and
then a voting rule (or voting correspondence) selects the winning
alternative (or multiple winning alternatives). Mathematically, a
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voting rule or correspondence is defined as a mapping from the set
of possible preference profiles to the set of alternatives. Here, a
profile is a vector of all the agents’ preferences.

In some sense, this means that the agents’ preferences are the
“causes” of the joint decision. However, there is a different (and al-
most reversed) point of view: there is a “correct” joint decision, but
the agents may have different perceptions (estimates) of what this
correct decision is. Thus, the agents’ preferences can be viewed as
noisy reports on the correct joint decision. Even in this framework,
the agents still need to make a joint decision based on their prefer-
ences, and it makes sense to choose their best estimate of the correct
decision. Given a noise model, one natural approach is to choose
the maximum likelihood estimate of the correct decision. The max-
imum likelihood estimator is a function from profiles to alternatives
(more accurately, subsets of alternatives, since there may be ties),
and as such is a voting rule (more accurately, a correspondence).

This maximum likelihood approach was first studied by Con-
dorcet [5] for the cases of two and three alternatives. Much later,
Young [15] showed that for arbitrary numbers of alternatives, the
MLE rule derived from Condorcet’s noise model coincides with the
Kemeny rule [8]. The approach was further pursued by Drissi and
Truchon [6]. More recently, Conitzer and Sandholm [4] studied
whether and how common voting correspondences and preference
functions (that is, mappings that take agents’ preferences as input,
and output one or more aggregate rankings of the alternatives) can
be represented as maximum likelihood estimators. Even more re-
cently, the maximum likelihood approach for preference functions
has been investigated in more detail [3]. The related notion of dis-
tance rationalizability has also received attention in the computa-
tional social choice community recently [7].

All of the above work does not assume any structure on the set of
alternatives. However, in real life, the set of alternatives often has a
multi-issue structure: there are multiple issues (or attributes), each
taking values in its respective domain, and an alternative is charac-
terized by the values that the issues take. For example, consider a
situation where the citizens of a country vote to directly determine a
government plan, composed of multiple sub-plans for several inter-
related issues, such as transportation, environment, and health [2].
Clearly, a voter’s preferences for one issue in general depend on the
decision taken on the other issues: for example, if a new highway
is constructed through a forest, a voter may prefer a nature reserve
to be established; but if the highway is not constructed, the voter
may prefer that no nature reserve is established.

The number of alternatives in a multi-issue domain is exponen-
tial in the number of issues, which makes commonly studied voting
methods impractical (for one, they require the agents to rank all the
alternatives). One straightforward way to aggregate preferences in
multi-issue domains is issue-by-issue (a.k.a. seat-by-seat) voting,
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which requires that the voters explicitly express their preferences
over each issue separately, after which each issue is decided by ap-
plying local (issue-wise) voting rules independently. This makes
sense if voters’ preferences are separable, that is, if the preferences
of every voter over any issue are independent of the values taken by
the other issues. However, if a voter has nonseparable preferences,
it is not clear how she should vote in such an issue-by-issue elec-
tion. Indeed, it is known that natural strategies for voting in such a
context can lead to very undesirable results [2, 9].

While in general, a voter’s preferences for one issue depend on
the decisions taken on other issues, on the other hand, one would
not necessarily expect the preferences for one issue to depend on
all other issues. CP-nets [1] were developed as a natural repre-
sentation language for capturing such limited dependence among
the preferences over multiple issues; they have some obvious sim-
ilarities to Bayesian networks. Recent work has started to investi-
gate using CP-nets to represent preferences in voting contexts with
multiple issues. If there is an order over issues such that every
voter’s preferences for “later” issues depends only on the deci-
sions made on “earlier” issues, then the voters’ CP-nets are acyclic,
and a natural approach is to apply issue-wise voting rules sequen-
tially [10]. This sequential voting process has a low communica-
tion cost, and a low computational cost if each of the local vot-
ing rules is easy to compute. While assuming such an order exists
is still restrictive, it is much less restrictive than assuming separa-
ble preferences (for one, the resulting preference domain is expo-
nentially larger [10]). Recent extensions of sequential voting rules
include order-independent sequential voting rules [14], as well as
a framework for voting when preferences are modeled by general
(that is, not necessarily acyclic) CP-nets [13]; [11] computes the set
of possible weak Condorcet winners (called majority-optimal alter-
natives by [12]) when preferences are modeled by general CP-nets,
by first eliminating many alternatives efficiently, and then deter-
mining the possible weak Condorcet winners among the remaining
alternatives.

In this paper, we combine both research directions: we take an
MLE approach to preference aggregation in multi-issue domains,
when the voters’ preferences are represented by (not necessarily
acyclic) CP-nets. Considering the structure of CP-nets, we focus
on probabilistic models that are very weakly decomposable. That
is, given the “correct” winner, a voter’s local preferences over an
issue are independent from her local preferences over other issues,
and as well as from her local preferences over the same issue given
a different setting of (at least some of) the other issues.

After reviewing some background, we start with the general case
in which the issues are not necessarily binary. The goal here is
to investigate when issue-by-issue or sequential voting rules can
be modeled as maximum likelihood estimators. When the input
profile is separable, we completely characterize the set of all voting
correspondences that can be modeled as an MLE for a noise model
satisfying a weak decomposability (resp. strong decomposability)
property. Then, when the input profile of CP-nets is consistent with
a common order over issues, we prove that no sequential voting
rule satisfying unanimity can be represented by an MLE, provided
the noise model satisfies very weak decomposability. We show that
this impossibility result no longer holds if the number of voters is
bounded above by a constant.

Then, we move to the special case in which each issue has only
two possible values. For such domains, we introduce distance-
based noise models, in which the local distribution over any is-
sue i under some setting of the other issues depends only on the
Hamming distance from this setting to the restriction of the “cor-
rect” winner to the issues other than i. We characterize distance-

based noise models axiomatically. Then we focus on distance-
based threshold noise models in which there is a threshold such that
if the distance is smaller than the threshold, then a fixed nonuniform
local distribution is used, whereas if the distance is at least as large
as the threshold, then a uniform local distribution is used. We show
that when the threshold is one, it is NP-hard to compute the winner,
but that when it is equal to the number of issues, the winner can be
computed in polynomial time.

2. TECHNICAL BACKGROUND
Let X be a finite set of alternatives (or candidates). A vote V

is a linear order on X , i.e., a transitive, antisymmetric, and total
relation on X . The set of all linear orders on X is denoted by
L(X ). An n-voter profile P is a collection of n votes, that is, P =
(V1, . . . , Vn), where Vj ∈ L(X ) for every j ≤ n. The set of all
profiles on X is denoted by P (X ). A (voting) rule r : P (X ) → X
maps any profile to a single candidate (the winner). A (voting)
correspondence c : P (X ) → 2X maps any profile to a subset of
candidates. A preference function f : P (X ) → 2L(X) maps any
profile to a set of linear orders over X .

2.1 Maximum likelihood approach to voting
In the maximum likelihood approach to voting, it is assumed that

there is a correct winner d ∈ X , and each vote V is drawn condi-
tionally independently given d, according to a conditional proba-
bility distribution π(V |d). The independence structure of the noise
model is illustrated in Figure 1. The use of this independence struc-
ture is standard. Moreover, if conditional independence among
votes is not required, then any voting rule can be represented by
an MLE for some noise model [4], which trivializes the question.

correct outcome

Voter 1 Voter 2 Voter n. . .

Figure 1: The noise model.
Under this independence assumption, the probability of a pro-

file P = (V1, . . . , Vn) given the correct winner d is π(P |d) =Qn

i=1 π(Vi|d). Then, the maximum likelihood estimate of the cor-
rect winner is MLEπ(P ) = arg maxd∈X π(P |d).

MLEπ is a voting correspondence, as there may be several al-
ternatives d that maximize π(P |d). Another model that has been
studied assumes that there is a correct ranking of the alternatives.
Here, the model is defined similarly: given the correct linear order
V ∗, each vote V is drawn conditionally independently according to
π(V |V ∗). The maximum likelihood estimate is defined as follows.

MLEπ(P ) = arg maxV ∗∈L(X)

Q
V ∈P

π(V |V ∗)
In this paper, we require that all such conditional probabilities to

be positive for technical reasons.
Definition 1 ([4]) A voting rule (correspondence) r is a maximum
likelihood estimator for winners under i.i.d. votes (MLEWIV) if
there exists a noise model π such that for any profile P , we have
that MLEπ(P ) = r(P ).
Definition 2 ([4]) A preference function f is a maximum likeli-
hood estimator for rankings under i.i.d. votes (MLERIV) if there
exists a noise model π such that for any profile P , we have that
MLEπ(P ) = f(P ).
Conitzer and Sandholm studied which common voting rules/preference
functions are MLEWIVs/MLERIVs [4]. A candidate scoring cor-
respondence c is a correspondence defined by a scoring function
s : L(X ) × X → R in the following way: for any profile P ,
c(P ) = arg maxd∈X

P
V ∈P s(V, d).
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2.2 Voting in multi-issue domains
In this paper, the set of all alternatives X is a multi-issue do-

main. That is, let I = {x1, . . . ,xp} (p ≥ 2) be a set of issues,
where each issue xi takes values in a finite local domain Di. The
set of alternatives is X = D1 × . . . × Dp, that is, an alternative
is uniquely identified by its values on all issues.1 A multi-issue
domain is binary if for every i we have Di = {0i, 1i}. For any
alternative �d = (d1, . . . , dp) and any issue xi, we let �d|xi

= di

and �d−i = (d1, . . . , di−1, di+1, . . . , dp). For any I ⊆ {1, . . . , p},
we let DI =

Q
i∈I

Di, and D−i = D{1,...,i−1,i+1,...,p}.

Example 1 A group must make a joint decision on the dinner menu
(the caterer can only serve the same menu to everyone). The menu
is composed of two issues: main course (M) and wine (W). There
are three choices for the main course: beef (b), fish (f), or salad
(s); and three for the wine: red (r), white (w), or pink (p). The set
of alternatives is a multi-issue domain: X = {b, f, s}× {r, w, p}.

CP-nets [1] are a useful language for expressing preferences com-
pactly over multi-issue domains. A CP-net N over X consists of
two components: (a) a directed graph G = (I, E) and (b) a set
of conditional linear preferences �i

�u over Di, for any i ≤ p and
any setting �u of the parents of xi in G (denoted by ParG(xi)).
These conditional linear preferences �i

�u over Di form the condi-
tional preference table for issue xi, denoted by CPT (xi). When
G is acyclic, N is said to be an acyclic CP-net. The set of all
CP-nets over X is denoted by CPnet(X ). A CP-net N induces the
partial order 	N , defined as the transitive closure of {(ai, �u, �z) 	
(bi, �u, �z)) | i ≤ p; �u ∈ DParG(xi); ai, bi ∈ Di s.t. ai 	i

�u bi; �z ∈
D−(ParG(xi)∪{xi})}. It is known [1] that if N is acyclic, then 	N

is transitive and asymmetric, that is, a strict partial order. (This is
not necessarily the case if N is not acyclic.) For any graph G′ on
I, a CP-net N is compatible with G′ if its graph G is a subgraph
of G′.

Example 2 Let X be the multi-issue domain defined in Example 1.
We define a CP-net N as follows: M is the parent of W, and the
CPTs consist of the following conditional preferences: CPT (M) =
{b 	 f 	 s}, CPT (W) = {b : r 	 p 	 w, f : w 	 p 	 r, s :
p 	 w 	 r}, where b : r 	 p 	 w is interpreted as follows:
“when M is b, then, r is the most preferred value for W, p is the
second most preferred value, and w is the least preferred value.” N
and its induced partial order �N (without edges implied by transi-
tivity) are depicted on Figure 2.

M W

CPT (M)
b � f � s

CPT (W)
b : r � p � w

f : w � p � r

s : p � w � r

br bp bw

fw fp fr

sp sw sr

(a) CP-net N . (b) The partial order induced by N .
Figure 2: An acyclic CP-net N and its induced partial order.

When all issues are binary, a CP-net N can be visualized as a hy-
percube with directed edges in p-dimensional space, in the follow-
ing way. Each vertex is an alternative, and any two adjacent ver-
tices differ in only one component (issue). That is, for any i ≤ p,
and any �d−i ∈ D−i, there is a directed edge connecting (0i, �d−i)

and (1i, �d−i), and the direction of the edge is from (0i, �d−i) to
(1i, �d−i) if and only if (0i, �d−i) 	N (1i, �d−i).
1In the following, we use vectors, such as �d, to denote alternatives.

Example 3 Let p = 3 and let N be a CP-net defined as fol-
lows: the directed graph of N has an edge from x1 to x2 and
an edge from x2 to x3; the CPTs are CPT (x1) = {01 	 11},
CPT (x2) = {01 : 02 	 12, 11 : 12 	 02}, CPT (x3) = {02 :
03 	 13, 12 : 13 	 03}. N is illustrated in Figure 3 (for simplic-
ity, in the figure, a vertex abc represents the alternative a1b2c3, for
example, the vertex 000 represents the alternative 010203).

x1 x2 x3

000 001

010 011

100 101

110 111

Figure 3: The hypercube representation of the CP-net.
A linear order V extends a CP-net N , denoted by V ∼ N , if it

extends �N . For any setting �u of ParG(xi), let V |xi:�u and N|xi:�u

denote the the restriction of V (or equivalently, N ) to xi, given �u.
That is, V |xi:�u (or N|xi:�u) is the linear order �i

�u.
For any graph G on I, V is G-legal if there exists a CP-net N

such that V ∼ N and N is compatible with G. We say V is legal
if it is G-legal for some acyclic graph G. A profile is G-legal if all
of its votes are G-legal. For any linear order O on I, we let GO be
the graph induced by O—that is, there is an edge (xi,xj) in GO

if and only if xi >O xj . For any directed acyclic graph G, a linear
order O can be found such that G ⊆ GO, which means that any
G-legal profile is also GO-legal (which we abbreviate as O-legal).
For example, let N be the CP-net defined in Example 2. Any linear
order over X that extends �N is G(M>W)-legal (or, equivalently,
(M > W)-legal). V is separable if and only if it extends a CP-
net in which there is no edge. Therefore, any separable vote is
O-legal for any ordering O of issues. We emphasize that votes are
not always required to be separable or legal in this paper.

In this paper, we fix O to be x1 > . . . > xp. Given a collection
of local rules (r1, . . . , rp) (where for any i ≤ p, ri is a voting rule
on Di), the sequential composition of r1, . . . , rp w.r.t. O, denoted
by Seq(r1, . . . , rp), is defined for all O-legal profiles as follows:
Seq(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈ X , where for any i ≤ p,
di = ri(P |xi:d1...di−1). Thus, the winner is selected in p steps,
one for each issue, in the following way: in step i, di is selected by
applying the local rule ri to the preferences of voters over Di, con-
ditioned on the values d1, . . . , di−1 that have already been deter-
mined for issues that precede xi. Seq(r1, . . . , rp) is well-defined,
because for any G-legal profile, the set of winners is the same for
all O′ such that G ⊆ GO′ (see [10]). When G has no edges,
Seq(r1, . . . , rp) becomes an issue-by-issue voting rule. Sequen-
tial composition of local correspondences c1, . . . , cp, denoted by
Seq(c1, . . . , cp) is defined in a similar way: for any O-legal profile
P , �d ∈ Seq(c1, . . . , cp)(P ) if and only if for any i ≤ p, we have
that di ∈ ci(P |xi:d1...di−1).

We will focus on voting methods that only use information about
voters’ preferences that is represented in the CP-nets that those
preferences extend. Therefore, we can consider an input profile
to be composed of CP-nets instead of linear orders.

3. MULTI-ISSUE DOMAIN NOISE MODELS
In this section, we extend the maximum likelihood estimation

approach to multi-issue domains (where X = D1 × . . . × Dp).
For now, we consider the case where there is a correct winner,
�d ∈ X . Votes are given by CP-nets and are conditionally inde-
pendent, given �d. The probability of drawing CP-net N given that
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the correct winner is �d is π(N|�d), where π is some noise model.
We note that π is a conditional probability distribution over all CP-
nets (in contrast to all linear orders in previous studies). Given this
noise model, for any profile of CP-nets P = (N1, . . . ,Nn), the
maximum likelihood estimate of the correct winner is

MLEπ(P ) = arg max�a∈X

Qn

j=1 π(Nj |�a)
Again, MLEπ is a voting correspondence.

Even if for all i, |Di| = 2, the number of CP-nets (including

cyclic ones) is 2p2p−1
(2 options for each entry of each CPT, and

the CPT of any issue i has 2p−1 entries, one for each setting of
the issues other than i). Hence, to specify a probability distribution
over CP-nets, we will assume some structure in this distribution so
that it can be compactly represented. Throughout the paper, we will
assume that the local preferences for individual issues (given the
setting of the other issues) are drawn conditionally independently,
both across issues and across settings of the other issues, given the
correct winner. More precisely:
Definition 3 A noise model is very weakly decomposable if for ev-
ery �d ∈ X , every i ≤ p, and every �a−i ∈ D−i, there is a probabil-

ity distribution π
�a−i

�d
over L(Di), so that for every �d ∈ X and every

N ∈ CPnet(X ), π(N|�d) =
Q

i≤p,�a−i∈D−i
π

�a−i

�d
(N|xi:�a−i

)

For instance, if Di = {0i, 1i, 2i}, π
�a−i

�d
(0i 	 2i 	 1i) is the prob-

ability that the CP-net of a given voter contains�a−i : 0i 	 2i 	 1i,
given that the correct winner is �d. Then, the probability of CP-net
N is the product of the probabilities of all its local preferences
N|xi:�a−i

over specific xi given specific �a−i (which contains the
setting for xi’s parents as a sub-vector), when the correct winner is
�d. (We will introduce stronger decomposability notions soon.)

Assuming very weak decomposability is reasonable in the sense
that a voter’s preferences for one issue are not directly linked to
her preferences for another issue. We note that this is completely
different from saying that the voter’s preferences for an issue do
not depend on the values of the other issues. Indeed, the voter’s
preferences for an issue can, at least in principle, change drasti-
cally depending on the values of the other issues. For instance, in
Example 1, the event “the voter prefers white to pink to red wine
when the main course is fish” is probabilistically independent (con-
ditional on the correct outcome) of the event “the voter prefers beef
to salad to fish when the wine is red.”

However, we do not want to argue that such a distribution al-
ways generates realistic preferences. In fact, with some probabil-
ity, such a distribution generates cyclic preferences. This is not a
problem, in the sense that the purpose of the maximum likelihood
approach is to find a natural voting rule that maps profiles to out-
comes. The fact that this rule is also defined for cyclic preferences
does not hinder its application to acyclic preferences. Similarly,
Condorcet’s original noise model for the single-issue setting also
generates cyclic preferences with some probability, but this does
not prevent us from applying the corresponding (Kemeny) rule [8]
to acyclic preferences.

Even assuming very weak decomposability, we still need to de-
fine exponentially many probabilities. We will now introduce some
successive strengthenings of the decomposability notion. First, we
introduce weak decomposability, which removes the dependence of
an issue’s local distribution on the settings of the other issues in the
correct winner.

Definition 4 A very weakly decomposable noise model π is weakly
decomposable if for any i ≤ p, any �d1, �d2 ∈ X such that �d1|xi

=
�d2|xi

, we must have that for any �a−i ∈ D−i, π
�a−i

�d1
= π

�a−i

�d2
. Let

WD(X ) denote the set of correspondences that are the MLE for
some weakly decomposable noise model.

Next, we introduce an even stronger notion, namely strong decom-
posability, which removes all dependence of an issue’s distribution
on the settings of the other issues. That is, the local distribution
only depends on the value of that issue in the correct winner.

Definition 5 A very weakly decomposable noise model π is strongly
decomposable if it is weakly decomposable, and for any i ≤ p, any

�a−i,�b−i ∈ D−i, any �d ∈ X , we must have that π
�a−i

�d
= π

�b−i

�d
.

Let SD(X ) denote the set of correspondences that are the MLE
for some strongly decomposable noise model.

4. CHARACTERIZATIONS OF MLE COR-
RESPONDENCES

It seems that the MLE approaches are quite different from the
voting rules that have previously been studied in the context of
multi-issue domains, such as issue-by-issue voting and sequential
voting. This may imply that the maximum likelihood approach can
generate sensible new rules for multi-issue domains. Nevertheless,
we may wonder whether previously studied rules also fit under the
MLE framework.

In this section, we study whether or not issue-by-issue and se-
quential voting correspondences can be modeled as the MLEs for
very weakly decomposable noise models. We note that voting rules
(which always output a unique winner) are a special case of voting
correspondences. Therefore, our results easily extend to the case
of voting rules. First, we restrict the domain to separable profiles
(that is, all votes in the input profile are separable), and characterize
the set of all correspondences that can be modeled as the MLEs for
strongly/weakly decomposable noise models. Most of the proofs
of the theorems are omitted due to the space constraint.
Theorem 1 Over the domain of separable profiles, a voting corre-
spondence c can be modeled as the MLE for a strongly decompos-
able noise model if and only if c is an issue-by-issue voting corre-
spondence composed of MLEWIVs.

Theorem 2 Over the domain of separable profiles, a voting corre-
spondence c can be modeled as the MLE for a weakly decompos-
able noise model if and only if c is an issue-by-issue voting corre-
spondence composed of candidate scoring correspondences.

However, for sequential voting correspondences, we have the fol-
lowing negative result. A voting correspondence c satisfies una-
nimity if for any profile P in which each vote ranks an alternative
�d first, we have r(P ) = {�d}.

Theorem 3 Let Seq(c1, . . . , cp) be a sequential voting correspon-
dence that satisfies unanimity. Over the domain of O-legal pro-
files, there is no very weakly decomposable noise model such that
Seq(c1, . . . , cp) is the MLE.
This theorem tells us that even assuming the weakest conditional
independence of the noise model, the voting correspondence de-
fined by the MLE of that noise model is different from any sequen-
tial voting correspondence satisfying unanimity. This suggests that
the MLE approach gives us new voting rules/correspondences.

However, a connection between MLEs for very weakly decom-
posable noise models and sequential voting correspondences can
be obtained if there is an upper bound on the number of voters.
The next theorem states that for any natural number n and any se-
quential composition of MLEWIVs, there exists a very weakly de-
composable noise model such that for any profile of no more than
n O-legal votes, the set of winners under the MLE for that noise
model is always a subset of the set of winners under the sequential
correspondence. That is, if the local correspondences can be justi-
fied by a noise model, then, to some extent, so can the sequential
voting correspondence that uses these local rules.
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Theorem 4 For any n ∈ N and any sequential voting correspon-
dence Seq(c1, . . . , cp) where for each i ≤ p, ci is an MLEWIV,
there exists a very weakly decomposable noise model π such that
for any O-legal profile P composed of no more than n votes, we
have that MLEπ(P ) ⊆ Seq(c1, . . . , cp)(P ).

Proof of Theorem 4: Let ri be the MLEWIV with the conditional
probability distribution Pri(V

i|di), where V i ∈ L(Di), di ∈ Di.

For any i ≤ p, we let Ri,n
max = maxPi,P ′

i
,di,d′

i

j
Pri(Pi|di)

Pri(P ′
i |d

′
i)

ff
,

where di, d
′
i ∈ Di, and Pi and P ′

i are profiles with the same num-
ber (but no more than n) of linear orders over Di. We let R

i,n
min = 1

if ri is the trivial correspondence that always outputs the whole do-

main; and R
i,n
min = min

Pi,�di,�d′

i

j
Pri(Pi|di)

Pri(Pi|d′
i)

:
Pri(Pi|di)

Pri(Pi|d′
i)

> 1

ff
,

where di, d
′
i ∈ Di, and Pi is a profile of no more than n linear or-

ders over Di. We note that for any i ≤ p, any n ∈ N, we have that
Ri,n

max ≥ R
i,n
min ≥ 1.

For any V i ∈ L(Di), any �d ∈ X , and any �a−i ∈ D−1, we let

π
�a−i

�d
(V i) =

8
<

:

Pri(V
i|di)

ki/Zi if �a−i = �d−i

1

|Di|!
otherwise

,

where Zi =
P

V i∈L(Di)
Pri(V

i|di)
ki is a normalizing factor, and

1 = k1 > k2 > . . . > kp > 0 are chosen in the following way:
for any i′ < i ≤ p, any V i, W i ∈ L(Di), and any di, d

′
i ∈ Di, if

R
i,n
min > 1, then we must have that (Ri,n

max)ki < (Ri′,n
min)k

i′
/2i−i

′

.
We next prove that for any profile PCP of no more than n CP-

nets, we must have that MLEπ(PCP ) ⊆ Seq(r1, . . . , rp)(PCP ).
For the sake of contradiction, let PCP be a profile of no more than
n CP-nets with MLEπ(PCP ) � Seq(r1, . . . , rp)(PCP ). Let �d ∈

MLEπ(PCP ), and i∗ be the number such that there exists �d∗ ∈
Seq(r1, . . . , rp)(PCP ) such that for all i′ < i∗, di′ = d∗

i′ , and
di∗ �∈ ri∗(PCP |xi∗ :d1...di∗−1). Because ri∗(PCP |xi∗ :d1...di∗−1) �=

Di∗ , we must have that R
i∗,n
min > 1. Because �d ∈ MLEπ(PCP ),

we must have that
π(PCP |�d)

π(PCP |�d∗)
≥ 1. However, we have the follow-

ing calculation that leads to a contradiction.

1 ≤
π(PCP |�d)

π(PCP |�d∗)
=

Qp

i=1 Pri(PCP |xi:d1...di−1 |di)Qp

i=1 Pri(PCP |xi:d
∗

1 ...d∗

i−1
|d∗

i )

=

Qp

i=i∗
Pri(PCP |xi:d1...di−1 |di)Qp

i=i∗
Pri(PCP |xi:d

∗

1 ...d∗

i−1
|d∗

i )

≤
1

(Ri∗,n
min)ki∗

·

pY

i=i∗+1

(Ri,n
max)ki

<
1

(Ri∗,n
min)ki∗

·

pY

i=i∗+1

(Ri∗,n
min)ki∗/2i−i

∗

< 1

Therefore, we must have that MLEπ(P ) ⊆ Seq(r1, . . . , rp)(P )
for all profiles P that consist of no more than n CP-nets. �

5. DISTANCE-BASED MODELS
We have shown in the previous section that the MLE approach

may give us new voting rules in multi-issue domains. However, as-
suming very weak decomposability, there are too many (exponen-
tially many) parameters in the noise model, which makes it very
hard to implement a rule based on the MLE approach. In this sec-
tion, we focus on a family of maximum likelihood estimators that
are based on noise models defined over binary multi-issue domains
(domains composed of binary issues), and that need only a few

parameters to be specified. We recall that a CP-net on a binary
multi-issue domain corresponds to a directed hypercube in which
each edge has a direction representing the local preference. A very
weakly decomposable noise model π can be represented by a col-
lection of weighted directed hypercubes, one for each correct win-
ner, in which the weight of each directed edge is the probability
of the local preference represented by the directed edge. For any
outcome �d ∈ X , any issue xi, any �e−i ∈ D−i, and any di �= d′

i ∈
Di, the weight on the directed edge ((�e−i, di), (�e−i, d

′
i)) of the

weighted hypercube corresponding to the correct winner �d is de-
noted by π

�e−i

�d
(di 	 d′

i), and represents the probability that a given
voter reports the preference �e−i : di 	 d′

i in her CP-net, given that
the correct winner is �d.2 For example, when the correct winner is
010203, the weight on the directed edge (011203, 011213) is the
probability π

0112
010203

(03 	 13). We now propose and study very
weakly decomposable noise models in which the weight of each
edge depends only on the Hamming distance between the edge and
the correct winner.

For any pair of alternatives �d, �d′ ∈ X , the Hamming distance
between �d and �d′, denoted by |�d− �d′|, is the number of components
in which �d is different from �d′, that is, |�d − �d′| = #{i ≤ p : di �=

d′
i}. Let e = (�d1, �d2) be a pair of alternatives such that |�d1− �d2| =

1 (equivalently, an edge in the hypercube). The distance between
e and an alternative �d ∈ X , denoted by |e − �d|, is the smaller
Hamming distance between �d and the two ends of e, that is, |e −
�d| = min{|�d1 − �d|, |�d2 − �d|}. For example, |011203 − 010203| =
1, |011213 − 010203| = 2, and |(011203, 011213)− 010203| = 1.

We next introduce distance-based noise models in which the
probability distribution π

�a−i

�d
only depends on di and the Hamming

distance between �a−i and �d−i.

Definition 6 Let X be a binary multi-issue domain. For any �q =
(q0, . . . , qp−1) such that 1 > q0, . . . , qp−1 > 0, a distance-based
(noise) model π�q is a very weakly decomposable noise model such
that for any �d ∈ X , any i ≤ p, and any �a−i ∈ D−i with |�a−i −
�d−i| = k ≤ p − 1, we have that π

�a−i

�d
(di 	 d̄i) = qk.

The intuition behind the notion of a distance-based model is as fol-
lows. First, it is plausible to assume that the “closer” two alterna-
tives are to the correct alternative, the more likely a given voter will
order them in the “correct” way, that is, will prefer the one which
is closer to the correct alternative. The family of distance-based
voting rules is actually more general than this, because we do not
impose q1 ≥ . . . ≥ qp−1, but we may of course add this restriction
if we wish to. Moreover, the choice of the Hamming distance is
not necessary, and other intuitive distance-based models can be de-
fined, using other distances – for instance, domain-dependent dis-
tances. But, the Hamming distance is a natural starting point (most
works in distance-based belief base merging and distance-based be-
lief revision also focus on the Hamming distance).

Given the correct winner �d, a distance-based model π�q can be
visualized by the following weighted directed graph built on the
hypercube:
• For any undirected edge e = (�d1, �d2) in the hypercube, where
�d1, �d2 differ only on the value assigned to xi for some i ≤ p, if
�d1|xi

= di, then the direction of e is from �d1 to �d2; if �d2|xi
= di,

then the direction of e is from �d2 to �d1. That is, the direction of
the edge is always from the alternative whose xi component is the

2For every pair of alternatives differing on exactly one issue, there is exactly one
weighted edge between them; the direction of the edge only says that we are going
further from the correct winner. This will be made more precise after Definition 6.
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same as the xi component of the correct winner to the other end of
the edge.
• For any edge e with |e − �d| = l, the weight of e is ql.

For example, given that 010203 is the correct winner, the distance-
based model is illustrated in Figure 4.

000 001

010 011

100 101

110 111

q0

q0

q0

q1

q1

q1

q1

q1

q1

q2

q2

q2

Figure 4: The distance-based model π(q0,q1,q2) when the cor-
rect winner is 000.

To characterize distance-based models, we first define inter-issue
permutations. Intuitively, an inter-issue permutation is a permuta-
tion that exchanges two issues.

Definition 7 An inter-issue permutation is a permutation m+
i,j or

m−
i,j on D1 ∪ . . . ∪ Dp, for some 1 ≤ i �= j ≤ p, defined as

follows: (1) for any k �= i, j and any dk ∈ Dk, m+
i,j(dk) =

m−
i,j(dk) = dk; (2) m+

i,j exchanges 0i and 0j , and exchanges 1i

and 1j ; m−
i,j exchanges 0i and 1j , and exchanges 1i and 0j . Note

that (m+
i,j)

−1 = m+
i,j and (m−

i,j)
−1 = m−

i,j .

Any mi,j ∈ {m+
i,j , m

−
i,j} induces a permutation Mi,j on the set of

all sub-vectors of any �d ∈ X as follows: for any I ⊆ I and �dI =
(di1 , . . . , di

|I|
) ∈ DI , Mi,j(dI) = (mi,j(di1), . . . , mi,j(di

|I|
)).

For example, let p = 3, and m1,2 be an inter-issue permutation
such that m1,2(01) = 12. Then we have M1,2(11) = 02,
M1,2(02) = 11, M1,2(12) = 01; M1,2(010203) = 111203,
M1,2(1113) = 0213.

We note that since each issue is binary, there are exactly two
ways of exchanging issue xi and xj : either map 0i to 0j (and 1i to
1j ), or map 0i to 1j (and 1i to 0j ).

Definition 8 A very weakly decomposable noise model π satisfies
inter-issue neutrality if for any i, j ≤ p, any inter-issue permutation
mi,j (which induces Mi,j), any i′ ≤ p, any �d ∈ X , and any �a−i′ ∈

D−i′ , we have that π
�a
−i′

�d
(0i′ 	 1i′) = π

Mi,j(�a
−i′

)

Mi,j(�d)
(mi,j(0i′) 	

mi,j(1i′)).

Thus, the noise model π satisfies inter-issue neutrality if after
exchanging any two issues, the resulting noise model is still π. Or
equivalently, π is indifferent to the names of the issues as well as
the names of the values they take. We next show that the class of
distance-based models can be completely characterized as the class
of noise models that satisfy very weak decomposability and inter-
issue neutrality.

Theorem 5 Let X be a binary multi-issue domain. A very weakly
decomposable noise model π is a distance-based noise model if and
only if it satisfies inter-issue neutrality.

We are especially interested in a special type of distance-based
models in which there exists a threshold 1 ≤ k ≤ p and q > 1

2
,

such that for any i < k, we have that qi = q, and for any k ≤ i ≤
p − 1, we have that qi = 1

2
. Such a model is denoted by πk,q. We

call πk,q a distance-based threshold noise model with threshold k.
We say that a noise model π has threshold k ≤ p if and only if there
exists q > 1

2
such that π = πk,q. The MLE for a distance-based

threshold model πk,q is denoted by MLEπk,q
.

Example 4 Let p = 3. π1,q and π2,q are illustrated in Figure 5
(when the correct winner is 000).
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(a) The threshold is 1. (b) The threshold is 2.
Figure 5: Distance-based threshold models. The weight of the
bold edges is q > 1

2
; the weight of all other edges is 1

2
.

The following theorem provides an axiomatic characterization
of the set of all noise models that have threshold p, which is the
number of issues. This axiomatization is similar to the one in The-
orem 5.

Theorem 6 Let X be a binary multi-issue domain. A noise model
π is a distance-based threshold noise model with threshold p iff π

is strongly decomposable and satisfies inter-issue neutrality.

We next present a direct method for computing winners under
the MLE correspondences of distance-based threshold models. For
any 1 ≤ k ≤ p, any �d ∈ X , and any CP-net N , we define the
consistency of degree k between �d and N , denoted by Nk(�d,N ),
as follows. Nk(�d,N ) is the number of triples (�a,�b, i) such that
�a−i = �b−i, ai = di, bi = d̄i, |(ai, bi) − �d| ≤ k − 1, and
N contains a−i : di 	 d̄i. That is, Nk(�d,N ) is the number of
local preferences (over any issue xi, given any �a−i ∈ D−i) in
N that are di 	 d̄i, where the distance between �d and the edge
((di,�a−i), (d̄i,�a−i)) is at most k − 1. For any profile PCP of
CP-nets, we let Nk(�d, PCP ) =

P
N∈PCP

Nk(�d,N ).

Theorem 7 For any k ≤ p, any q > 1
2

, and any profile PCP of

CP-nets, we have that MLEπk,q
(PCP ) = arg max�d

Nk(�d, PCP ).

That is, the winner for any profile of CP-nets under any MLE for
a distance-based threshold model πk,q maximizes the sum of the
consistencies of degree k between the winning alternative and all
CP-nets in the profile.
Proof of Theorem 7: For any k ≤ p, any �d ∈ X , we let Lk =

#{e : |e − �d| ≤ k − 1}. That is, Lk is the number of edges in
the hypercube whose distance from a given alternative �d is no more
than k − 1. For any �d ∈ X and any CP-net N , we have that

lnπ(PCP |�d)

=
X

N∈PCP

ln
Y

i,�a−i∈D−i

π
�a−i

di
(N|xi:�a−i

)

=
X

N∈PCP

(Nk(�d,N ) ln q + (Lk − Nk(�d,N )) ln(1 − q))

=
X

N∈PCP

(Nk(�d,N ) ln
q

1 − q
+ Lk ln(1 − q))

Therefore, MLEπk,q
(PCP ) = arg max�d

π(PCP |�d)
= arg max�d

P
N∈PCP

(Nk(�d,N ) ln q

1−q
+ Lk ln(1 − q))

= arg max�d
Nk(�d, PCP ). �

Therefore, we have the following corollary, which states that the
winners for any profile under MLEπk,q

do not depend on q, pro-
vided that q > 1

2
.

Corollary 1 For any k ≤ p, any q1 > 1
2
, q2 > 1

2
, and any profile

PCP of CP-nets, we have MLEπk,q1
(PCP ) = MLEπk,q2

(PCP ).

Example 5 Consider two binary issues x1,x2, and three voters,
who report the following CP-nets:
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• N1 has an edge from x1 to x2, and the following local prefer-
ences: {01 	 11, 01 : 02 	 12, 11 : 12 	 02}.

• N2 has an edge from x1 to x2 and an edge from x2 to x1, and
the following local preferences: {02 : 11 	 01, 12 : 01 	 11, 01 :
12 	 02, 11 : 02 	 12}.

• N3 has no edge, and the following local preferences: {11 	
01, 12 	 02}.

Let PCP = (N1,N2,N3).
First, consider k = 1. Let us compute N1(1112,N1). There are
two edges whose distance to 1112 is 0: one from 1112 to 1102 and
one from 1112 to 0112. The first one is in the preference relation in-
duced from N1; the second one is not. Therefore, N1(1112,N1) =
1. Similarly, we get N1(1112,N2) = 0 and N1(1112,N3) = 2,
henceforth, N1(1112, PCP ) = 3. Similar calculations lead to
N1(1102, PCP ) = 3, N1(0112, PCP ) = 4 and N1(0102, PCP ) =
2, hence MLEπ1,q

(PCP ) = {0112} (for any value of q > 1
2

).
Now, consider k = 2. Let us compute N1(1112,N1). Now, we
have to consider all four edges, since all of them are at a distance
0 or 1 to 1112. The two edges not considered for the case k = 1
are the edge from 0112 to 0102 and one from 1102 to 0112. In both
cases, voter 1 prefers the alternative which is further from 1112,
therefore, N2(1112,N1) = 1. Similarly, we get N2(1112,N2) =
2 and N2(1112,N3) = 4, henceforth, N2(1112, PCP ) = 7. Simi-
lar calculations lead to N2(1102, PCP ) = 5, N2(0112, PCP ) = 7
and N1(0102, PCP ) = 5, hence MLEπ2,q

(PCP ) = {0112, 1112}.

We next investigate the computational complexity of applying
MLE rules with distance-based threshold models. First, we present
a polynomial-time algorithm that computes the winners and out-
puts the winners in a compact way, under MLEπp,q

, where p is
the number of issues. This algorithm computes the correct value(s)
of each issue separately: for any issue xi, the algorithm counts the
number of tuples (�a−i,N ), where �a−i ∈ D−i and N is a CP-net
in the input profile PCP , such that N contains a−i : 0i 	 1i. If
there are more tuples (�a−i,N ) in which N contains a−i : 0i 	 1i

than there are tuples in which N contains a−i : 1i 	 0i, then we
select 0i to be the ith component of the winning alternative, and
vice versa. We note that the time required to count tuples (�a−i,N )
depends on the size of N . Therefore, even though computing the
value for xi takes time that is exponential in |ParG(xi)| (the num-
ber of parents of xi in the directed graph of N ), the CPT of xi

in N itself is also exponential in |ParG(xi)| (for each setting of
ParG(xi), there is an entry in CPT (xi)). This explains why the
algorithm runs in polynomial time.

Algorithm 1 INPUT: p ∈ N, 1
2

< q < 1, and a profile of CP-nets
PCP over a binary domain consisting of p issues.
1. For each i ≤ p:
1a. Let Si = 0, Wi = ∅.
1b. For each CP-net N ∈ PCP : let ParG(xi) = {xi1 , . . . ,xi

p′
}

be the parents of xi in the directed graph of N . Let l be the number
of settings �y of ParG(xi) for which N|xi:�y = 0i 	 1i. Let Si ←

Si + l2p−p′

− 2p−1. Here, p′ is the number of parents of xi, and
l2p−p′

−2p−1 is the number of edges in the CP-net where 0i 	 1i,
minus the number of edges where 1i 	 0i.

1c. At this point, let Wi =

8
<

:

{0i} if Si > 0
{1i} if Si < 0
{0i, 1i} if Si = 0

2.Output W1 × . . . × Wp.

Proposition 1 The output of Algorithm 1 is MLEπp,q
(PCP ), and

the algorithm runs in polynomial time.

The next example shows how to compute the winners under MLEπp,q

for the profile defined in Example 5.

Example 5, continued Let us first compute S1. In N1 (respec-
tively, N1 and N3), the table for x1 contributes to 2 edges (respec-
tively, one edge and no edge) from 01 to 11, and to no edge (re-
spectively, one edge and two edge) from 11 to 01, therefore S1 =
(+2) + 0 + (−2) = 0. Similarly, S2 = 0 + 0 + (−2) =
−2. Therefore, W1 = {01, 11} and W2 = {12}, which gives
us MLEπ2,q

(PCP ) = {0112, 1112}.
However, when the threshold is one, computing the winners is

NP-hard, and the associated decision problem, namely checking
whether there exists an alternative �d such that N1(�d, PCP ) ≥ T , is
NP-complete.
Theorem 8 It is NP-hard to find a winner under MLEπ1,q

. More
precisely, it is NP-complete to decide whether there exists an alter-
native �d such that N1(�d, PCP ) ≥ T .
Proof of Theorem 8: By Theorem 7, the decision problem of find-
ing a winner under MLEπ1,q

is the following: for any profile P

that consists of n CP-nets, and any T ≤ pn, we are asked whether
or not there exists �d ∈ X such that N1(�d, P ) ≥ T .

We prove the NP-hardness by reduction from the decision prob-
lem of MAX2SAT. The inputs of an instance of the decision prob-
lem of MAX2SAT consists of (1) a set of t atomic propositions
x1, . . . , xt; (2) a formula F = c1 ∧ . . . ∧ cm represented in con-
junctive normal form, in which for any i ≤ m, ci = li1 ∨ li2 , and
there exists j1, j2 ≤ t such that li1 is xj1 or ¬xj1 , and li2 is xj2

or ¬xj2 ; (3) T ≤ m. We are asked whether or not there exists a
valuation �x for the atomic propositions x1, . . . , xt such that at least
T clauses are satisfied under �x.

Given any instance of MAX2SAT, we construct a decision prob-
lem instance of computing a winner under MLEπ1,q

as follows.
• Let X be composed of t issues x1, . . . ,xt.
• Let T ′ = 16T − 12m.
• For any i ≤ m, we let vi1 be the valuation of xi1 under which
li1 is true; let vi2 be the valuation of xi2 under which li2 is true.
For any j ≤ t, we let 0j corresponds to xj being false, and 1j

corresponds to xj being true. Then, any valuation of the atomic
propositions is uniquely identified by an alternative. We next de-
fine six CP-nets as follows:

– Ni,1: the DAG of Ni,1 has only one directed edge (xi1 ,xi2).
In Ni,1, vi1 	 v̄i1 , vi1 : vi2 	 v̄i2 , v̄i1 : vi2 	 v̄i2 , and for any
j �= i1 and j �= i2, we have that 0j 	 1j .

– Ni,2: the DAG of Ni,2 has only one directed edge (xi1 ,xi2).
In Ni,2, vi1 	 v̄i1 , vi1 : v̄i2 	 vi2 , v̄i1 : vi2 	 v̄i2 , and for any
j �= i1 and j �= i2, we have that 0j 	 1j .

– Ni,3: the DAG of Ni,3 has only one directed edge (xi2 ,xi1).
In Ni,1, vi2 	 v̄i2 , vi2 : v̄i1 	 vi1 , v̄i2 : vi1 	 v̄i1 , and for any
j �= i1 and j �= i2, we have that 0j 	 1j .

We next obtain N ′
i,1, N ′

i,2, and N ′
i,3 from Ni,1, Ni,2, and Ni,3,

respectively, by letting 1j 	 0j for any j with j �= i1 and j �= i2.
Let �Ni = (Ni,1,N

′
i,1,Ni,2,N

′
i,2,Ni,3,N

′
i,3). We let the profile

of CP-nets be PCP = ( �N1, . . . , �Nm).
We make the following claim about the number of consistent

edges between an alternative �d and �Ni.

Claim 1 For any �d ∈ X and any i ≤ m,

N1(�d, �Ni) =

j
4 if �di1 = vi1 or di2 = vi2

−12 if �di1 = v̄i1 and di2 = v̄i2

Claim 1 states that the number of consistent edges between �d and
�Ni within distance 1 is 4 if the clause ci is true under the valua-

tion represented by �d; otherwise it is −12. For any �d ∈ X , we
let T�d

denote the number of clauses in c1, . . . , cm that are true
under �d. Then, we have that N1(�d, PCP ) = 4T�d

− 12(m −
T�d

) = 16T�d
− 12m. It follows from Theorem 7 that for any q >
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1
2

, MLEπ1,q
(PCP ) = arg max�d

N1(�d, PCP ) = arg max�d
T�d

.
Therefore, a winner of PCP under MLEπ1,q

corresponds to a val-
uation under which the number of satisfied clauses is maximized;
and any valuation that maximizes the number of satisfied clauses
corresponds to a winner of PCP under MLEπ1,q

. We note that the
size of PCP is O(mt). It follows that computing a winner under
MLEπ1,q

is NP-hard.
Clearly the decision problem is in NP. Therefore, the decision

problem is NP-complete to compute a winner under MLEπ1,q
. �

As we have seen (cf. Corollary 1), for a given multi-issue do-
main composed of p binary issues, there are exactly p voting cor-
respondences defined by distance-based threshold models. As far
as we know, these voting correspondences are entirely novel, and
are tailored especially for multi-issue domains. Now, among these
p voting correspondences, two are even more natural and interest-
ing: MLEπ1,q

and MLEπp,q
. MLEπ1,q

proceeds by electing the
alternatives which maximize the sum, over all voters, of the num-
ber of neighboring alternatives in the voter’s hypercube to which
she prefers �x. Now, recall that the Borda correspondence can be
characterized as the correspondence where candidate x is a winner
if it maximizes the sum, over all voters, of the number of candi-
dates the voter prefers to x. Therefore, MLEπ1,q

is somewhat
reminiscent of Borda—except, of course, that we do not count all
alternatives defeated by �x but only defeated alternatives that are
one of its neighbors in the hypercube. MLEπp,q

is even more in-
tuitive: for each issue xi, the winning value maximizes the number
of edges (summing over all voters) that are in favor of it, that is, it
is somewhat reminiscent of Kemeny.

So, MLEπ1,q
and MLEπp,q

are genuinely new voting corre-
spondences for multi-issue binary domains, which can be charac-
terized in terms of maximum likelihood estimators and are quite
intuitive; lastly, MLEπp,q

can be computed in polynomial time.

6. CONCLUSION
The central problems in preference aggregation in multi-issue

domains are to find practical ways for voters to represent and re-
port their preferences, as well as to find natural and computationally
feasible ways of aggregating these reported preferences. In this pa-
per, we considered the maximum likelihood estimation (MLE) ap-
proach to voting, and generalized it to multi-issue domains, assum-
ing that the voters’ preferences are expressed by CP-nets. We first
studied whether issue-by-issue voting rules and sequential voting
rules can be represented by the MLE of some noise model. For sep-
arable input profiles, we characterized MLEs of strongly/weakly
decomposable models as issue-by-issue voting correspondences com-
posed of local MLEWIVs/candidate scoring correspondences. Al-
though we showed that no sequential voting correspondence can be
represented as the MLE for a very weakly decomposable model,
we did obtain a positive result here under the assumption that the
number of voters is bounded above by a constant.

In the case where all issues are binary, we proposed and axioma-
tized a class of distance-based noise models; then, we focused on a
specific subclass of such models, parameterized by a threshold. We
identified the computational complexity of winner determination
for the two most relevant values of the threshold.

We note that, whereas Section 4 has a non-constructive flavor
because we studied existing voting mechanisms and Theorem 3 is
an impossibility theorem, quite the opposite is the case for Sec-
tion 5. Indeed, the MLE principle led us to define genuinely new
families of voting rules and correspondences for multi-issue do-
mains. These rules are radically different from the rules that had
previously been proposed and studied for these domains. Unlike
sequential or issue-by-issue rules, they do not require any domain

restriction, and yet their computational complexity is not that bad (
NP-complete at worst, and sometimes polynomial in the size of the
CP-nets). We believe that these new rules are very promising.

Future research could further investigate the computational as-
pects of determining the winners for MLE correspondences. For
example, in this paper, we characterized the complexity of comput-
ing winners under MLEs of distance-based threshold models with
thresholds 1 and p (the number of issues). It would be interesting to
identify the complexity for other thresholds (however, we conjec-
ture that it is at least NP-hard). More generally, the study of voting
in multi-issue domains is still in its infancy. Unlike in the stan-
dard (single-issue) case, relatively few rules have been proposed
and relatively little is known about social-choice-theoretic proper-
ties. We believe that this paper has demonstrated the potential of
the maximum likelihood approach to build a theory of social choice
in multi-issue domains.
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